OFDM-Based High-Speed Narrowband PLC
Approved for Smart Metering and Smart Grids
Agenda

- Motivation
- What is available for communications?
- Narrow Band vs. Broad Band
- DLC-2000 Communications Infrastructure
- Meshed PLC Networks
- Layer Structures
- Chip Architecture
- Protocols
- Medium Access
- Dynamic Routing
- Single Frequency Networking
- Summary & Conclusions
Motivation, what is ment to be SMART?

Competing Technologies
- Let people / consumers work
 - manual meter reading
- GSM / GPRS
- Fibre To The Home
- Cable TV
- Interferences
- Regulated Frequencies

Investment & RoI
- If the consumer like to receive e.g. a monthly bill, he is to read on his own behalf
- Infrastructure is for free, strong dependency on cost, availability and connectivity
- Huge investment into new fibre grid, will only be possible in newly developed locations
- New communications provider comes on board, dependencies between utility, consumer and cable TV provider
- Dimmer and other phenomena could become eliminated, if the currently unregulated frequency band above 150 kHz becomes regulated
What Else to Power Line Communications?

PLC competes with
- Field-busses on dedicated wires like CAN, ProfiBus, ..
- Voice-band- / DSL-modems on telephone lines
- Local area networks (Ethernet, ...)
- Radio based systems (ISM, Bluetooth, wireless LAN, DECT, ...)
- Cellular networks (GSM, UMTS, ... ⇒ operation expensive)

Power Line Communication is not Power Line Communication
- Narrow vs. broad band
- In house vs. LV & MV grid communications
- Synchronization, Modulation, Channel coding, MAC concept, routing ⇒ flooding, supported communication services
Characterisation of Power Line Communication Systems

<table>
<thead>
<tr>
<th></th>
<th>Low Data Rate Narrow Band</th>
<th>High Data Rate Narrow Band</th>
<th>Broad Band</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Range</td>
<td>9 – 148.5 kHz</td>
<td>9 – 500 kHz</td>
<td>1.5 – 50 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A-Band 9-95 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B-Band 95-125 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BCD-Band 95-148.5 kHz</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>other Bands</td>
<td></td>
</tr>
<tr>
<td>Data Rate</td>
<td>< 10 kbps</td>
<td>50 kbps < … < 1 Mbps</td>
<td>> 10 Mbps</td>
</tr>
<tr>
<td>Technology</td>
<td>FSK frequency shift keying</td>
<td>OFDM orthogonal frequency</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>division multiplex,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCM multi carrier modulation</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>differential coding</td>
<td></td>
</tr>
<tr>
<td>Forward Error Correction</td>
<td>no or low</td>
<td>strong</td>
<td></td>
</tr>
<tr>
<td>(FEC)</td>
<td></td>
<td>(for high reliability designed)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(for maximum throughput designed)</td>
<td></td>
</tr>
<tr>
<td>Applications</td>
<td>Automatic Meter Reading,</td>
<td>Airfield Lighting AGLAS,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>European Installation Bus,</td>
<td>Energy Management,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Line Area Network</td>
<td>Smart Grids & Metering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>AMR/AMM Automated Meter</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reading / Management</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Last mile Telecom,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internet, Voice over</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internet Protocol (VoIP),</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>High definition television (HDTV)</td>
<td></td>
</tr>
<tr>
<td>Companies, Organisations</td>
<td>Busch Jaeger, Echelon, Görlitz, Ytran, Renesas AMI Solution, Landis&Gyr</td>
<td>ADD Grup, iAd, Maxim, Prime (ADD, Current Group, Landis+Gyr, STMicroelectronics, Usyscom, ZIV, …)</td>
<td>Amperion, Current, DS2, Homeplug, Mitsubishi, OPERA, Panasonic, Spidcom</td>
</tr>
</tbody>
</table>
Narrow Band vs. Broad Band

- Requirement
 Coverage of large areas on existing infrastructure (MV- and LV-grid)

- Frequency range < 500 kHz
 - Much lower attenuation longer distances
 - Reduced number of repeaters lower costs more redundancy
 - Narrowband data rate between 100 kbps ... 1Mbps
 - Regulation: CENELEC / FCC 15 part B
 - No interference with SW radio

- Independent and parallel use with BPLC (1.5-30MHz) on one Power-Line

Length profile of the attenuation models for different cable lengths in LV access network

Source: M. Zimmermann, Energieverteilnetze als Zugangsmedium für Telekommunikationsdienste, Shaker Verlag, Aachen, Germany 2000

used by iAd
Frequency Regulation / EMC

- **USA**: FFC part 15 B
- **Japan**: IEC 61000-3-8
- **Asia**: IEC 60495:1993
- **Europe**: CENELEC EN50065

Coexistence of CENELEC communication and existing equipment not ensured

One communication standard, which uses several frequency bands

- **Not regulated**: Europe
- **Not measured**: Line conducted

Copyright © All Rights Reserved. Apr-09
Requirements on Smart Grid PLC system

High speed narrowband PLC
- Data rates > 50 kBit/s

One communication standard, which uses several frequency bands
- Cenelec A 9-95 kHz
- Cenelec B 95-125 kHz
- Cenelec BD / BCD 95-148.5 kHz
- FCC Bands 150 – 500 kHz

PLC system as communication infrastructure
- Supports several applications
- Different protocols
- No data warehouse or data concentrator

PLC System for MV and LV or LV only
DLC-200 is Communication Infrastructure

- AMR
- Multi-Utility
- Facility
- Diagnosis
- Tele-control
- Distance Control
- Security
- EEQ
- Emergency
- Health

Transparent communication

WAN

Gateway

Powergrid

LV

MV

DLC-200 Meter with RF
DLC-200 RF/Module
DLC-200 Meter
DLC-200 Node
DLC-200 Box (Mini RTU)
DLC-200 Box (Mini RTU)
DLC-200 Meter Modem
DLC-2000 System for MV and LV or LV only

Simple PLC network layout with one (a) or two (b) cascades
DLC-Components in the System

Architecture

Access Point
Coupling Unit
MV PLC
Coupling Unit
Bridge
LV PLC

Interfaces

Powergrid

Primary Sub
Secondary Sub
LV grid
MV grid
HV grid

Produkte

MV Coupling Unit
Access Point

MV Coupling Unit
Bridge / Mini-RTU
Only at bridge

LV PLC
Meter
Node Sensor/Aktor

Level 1
Level 2
Level 3
Level 4

DLC Meter
LV Node
Meter Modem

Radio solutions
Meshed PLC network

- Bridge Routing
- Access Point Routing
- Redundancy handling
- QoS Management
- Segmentation / reassembly
Layer Structure for multi-master system

Master M1

Master M2

Master/Slave (M1)

Master/Slave (M2)

Power-Line

Node

Bridge

Transport Layer

Network Layer

Physical Layer

Network Layer M1

Network Layer M2

Physical Layer with TDMA

Network Layer M1

Network Layer M2

Physical Layer with TDMA

Common Part

Convergence Layer

Copyright © All Rights Reserved. Apr-09
Requirements on Lower Communication Layers

- Low „electro smog“
- Coverage of long distances / large areas on existing infrastructure
- Large number of participants
- Control and security applications ⇒ real-time requirements

→ completely independent communication blocks

- High attenuation of the channel (cable 1 dB/km, branch 2-8 dB)
- No direct link to every client ⇒ No bus

→ Repeater are necessary

- Transmission quality changes over time
- Topology of network is often unknown

→ Automatic routing
 - Meshed MV-networks with variable switch configuration
 - Guaranteed reaction time and other real-time requirements

⇒ Ad hoc networking with very fast reaction times is required for ‘SmartGrids’ applications
Physical Layer

- Transmit blocks of date from one device to another device
 - Block synchronisation
 - Channel equalisation
 - Modulation / Demodulation
 - Forward Error Correction

- Time Synchronisation
 - Accuracy > 1ms over overall network

- FDMA as service for network planning

- TDMA to support
 - Multi master communication (roaming)
 - Hybrid medium access technologies
Approach for Independent Transmission Blocks

- full dynamic range for every block
- dynamic gain adaptation (impedance-variance)
- Energy normalized correlation
- OFDM (multi-path propagation / interference)
- differential coding along the frequency axis (no channel estimation, no carrier phase synchronisation, no time-variance)
- special demodulation against in-band narrow-band noise, coloured noise, impulse noise
- Convolutional coding and soft input Viterbi decoding

no information about the channel necessary
Architecture of DLC-2B System on Chip
DLC Chip

- High-Speed Narrow Band Power-Line Chipset for integrated solutions
 - Data rate up to 500 kBit/s
 - Band-width and carrier frequency freely configurable
 - Complies with CENELEC and FCC

- Low-Cost Chipset DLC-2B/BA with 8-Bit RISC Processor

- High Performance Chipset DLC-2C/CA in combination with hyNet
For the different applications a lot of protocols are already defined e.g. DLMS, IEC 870-5-10x, M-Bus, Konnex, ...

- Mainly packet oriented protocols with short package length (20-128 Bytes)
- Point to Multi-Point communication

- Automation:
 Hierarchical organized Applications ⇒ Master - Slave structures
- Facility Management
 Client - Server relationships (sensors provide information)
 Poll and push operations

Almost all traffic flows between one single point and all other communication points

Throughput at one single point defines system performance
Medium Access Techniques

Two classes:

- controlled medium access
 - protocol or structure avoids any collision
 - e.g. master-slave bus protocols, token ring, and TDMA

- concurring or random medium access techniques
 - collisions can happen
 - e.g. Aloha, Slotted Aloha, CSMA, CSMA/CD or CSMA/CA
 - due to hidden nodes in PLC no carrier sensing possible
 ⇒ for small packets only Slotted Aloha usable

- maximum throughput of Slotted Aloha is 36.8%

- e.g. IEEE 802.11b sees a throughput of 2-4 Mbps (11 Mbps), if several stations are talking

+ Hybrid medium access like Homeplug AV (CSMA/CA + TDMA)
Favorite Medium Access

- Traffic and channel characterization:
 - concentration of dataflow on single point
 - small packets
 - lot of participants
 - relatively high WERs are possible

- Central organization of channel access on this point

 ➔ Master / Slave System

 - free of collision
 - allows master a 100% throughput
 - for downlink optimum solution
 - if master knows about communication request of slave (to master or other slave), very efficient solution possible.
 - Polling of slaves with ensured minimum channel usage (e.g. 10-20%) for spontaneous data form slave
Automatic and Dynamic Routing

- Channel: No direct link to every client
- Every participant is a possible repeater for other devices
- Classical routing in central organized networks
 - Slaves inform master about possible repeaters
 - in dynamic networks a permanent update is required
 - Master calculates routing table
 - Repeater addressing in every packet
 - Complete reorganization after dramatic topology changes
 - exponential increase of effort for every repeater level

- A Single Frequency Network based flooding concept
 e.g.: All participants who have correctly received a packet retransmit this packet at the same time, on the same medium and the same frequency

⇒ SFN
Channel model with 200 randomly distributed participant

Request / Response service

1. Master transmit request
SFN-Flooding

- Channel model with 200 randomly distributed participant

- Request / Response service

1. Master transmit request
2. First repetition
SFN-Flooding

- Channel model with 200 randomly distributed participant
- Request / Response service

1. Master transmit request
2. First repetition
3. Second repetition
SFN-Flooding

- Channel model with 200 randomly distributed participant

- Request / Response service

1. Master transmit request
2. First repetition
3. Second repetition
4. Third repetition
SFN-Flooding

Channel model with 200 randomly distributed participant

Request / Response service

1. Master transmit request
2. First repetition
3. Second repetition
4. Third repetition
5. Slave transmit response
SFN-Flooding

- Channel model with 200 randomly distributed participant

- Request / Response service

1. Master transmit request
2. First repetition
3. Second repetition
4. Third repetition
5. Slave transmit response
6. First repetition
SFN-Flooding

- Channel model with 200 randomly distributed participant
- Request / Response service

1. Master transmit request
2. First repetition
3. Second repetition
4. Third repetition
5. Slave transmit response
6. First repetition
7. Second repetition
SFN-Flooding

Channel model with 200 randomly distributed participant

Request / Response service

1. Master transmit request
2. First repetition
3. Second repetition
4. Third repetition
5. Slave transmit response
6. First repetition
7. Second repetition
8. (Third repetition)
Comparison between Routing and Flooding based System

For this analysis we assume:

- Packet oriented physical layer with fixed packet size
- Master – slave system

The characteristic criteria are:

- Average protocol overhead
- Packet rate of packets transmitted only for routing and networking purposes
- Average duration of a polling cycle (single packet)
- Average duration of a broadcast
- Average logon time without any channel information
- Reaction to slow changes of the network
- Reaction to abrupt changes of the network
Reaction to Abrupt Changes of Network

- At time 0 channel model changed from ring_100 to tree
- routing based system will logout, search and login most of the slaves (interruption for minutes)
- flooding based system reaches all slaves within first polling cycle
 - maximum 5 (7) retries
 - doubled duration
- second polling cycle 30% more efficient
- after 5 polling cycles channel adaptation finished (< 1 min.)

→ Fast ad hoc networking
Ad hoc networking with very fast reaction times is required for ‘SmartGrids’ applications.

Throughput at one single point defines system performance.

Master / Slave system for central organization.

Logical independent channels for pipelining, Multi-Master, ...

Single Frequency Network based flooding concept for networking.

Comparison between routing and flooding based system:
- less overhead
- easier management
- much faster broadcast and login
- higher throughput
- very fast reorganization on channel or topology changes
Summary & Conclusion

- Market segment: High speed narrow band PLC
- Coexistence of CENELEC communication and existing equipment is not ensured
- One communication standard, which uses several frequency bands
- DLC – 2000 can be used either in CENELEC- or between 150-500 kHz
- DLC – 2000 is communication infrastructure
- System structure
- Layer concept
- Already known: Power Line is a time variant and difficult channel
- Specialized PHY with powerful channel coding is required
- Chipsets available
- Throughput at one single point defines system performance
- ‘SmartGrids’ applications require ad hoc networking and roaming
- SFN based flooding concept